Bugtraq mailing list archives

Re: Sample SecurID Token Emulator with Token Secret Import


From: "Dunker, Noah" <NDunker () FISHNETSECURITY COM>
Date: Fri, 22 Dec 2000 12:00:25 -0600

Practically though, you would need filesystem access or physical
access to the ACE/Server or the media which contains the ASCII
seed files for the tokens.

I was thrilled with how well this works, and it does a great
job showing how flawed RSA's setup is, but I don't see this
as being a horrible threat to companies who are using
SecurID.  On a somewhat secure network, it would be very
difficult to acquire the ASCII files, and therefore, this
code is useless.  If there was a way to deduce the equivalent
of the ASCII file by manipulating the clock time and knowing
the serial number and the number displayed on the token, this
would be much more dangerous.  I'm not much of a coder, so
the program's source code doesn't make a whole lot of sense
to me.  Maybe it IS possible to come up with the contents of
the seed file, but I'm going to say I doubt it.

Kudos to all who worked on this... it turned out very nicely!

Noah Dunker
Network Security Engineer / Piranha Team
FishNet Security
Ph: 816.421.6611
http://www.fishnetsecurity.com

"2000 Top 10 Kansas City Small Business"
"2000 Deloitte & Touche Fast 50 Rising Star"
"2000 Check Point Fastest Central Region Revenue Growth Award Winners"
"1999 Check Point Fastest Central Region Revenue Growth Award Winners"
"1999 CRN Top 25 Computer Executives"
"1998 Check Point Excellence Award Winners"


"Some Companies have Network Security Divisions,
 FishNet is a Network Security Company.
 Who should you trust with your Network Security ?"

__________________________________________________________

The information transmitted in this e-mail is intended only for the
addressee and may contain confidential and/or privileged material.
Any interception, review, retransmission, dissemination, or other use
of, or taking of any action upon this information by persons or entities
other than the intended recipient is prohibited by law and may subject
them to criminal or civil liability. If you received this communication
in error, please contact us immediately at 816.421.6611, and delete
the communication from any computer or network system.
__________________________________________________________


-----Original Message-----
From: I.C. Wiener [mailto:icwiener () MAILRU COM]
Sent: Thursday, December 21, 2000 6:12 PM
To: BUGTRAQ () SECURITYFOCUS COM
Subject: Sample SecurID Token Emulator with Token Secret Import


Sample SecurID Token Emulator with Token Secret Import

We have performed some cryptoanalysis and let's just say we do have
grounds to believe that this algorithm is easily breakable.
Once again, security of the cipher should be based entirely on the
secrecy of the key, not the algorithm.


Least Significant First byte order is assumed


/* (c) 1999-3001 I.C. Wiener */

#ifdef _MSC_VER
    #pragma intrinsic           (_lrotr, _lrotl)
#else /* GCC or CC */
    #define __int64             long long
    #define __forceinline       __inline__
    #define _lrotr(x, n)        ((((unsigned long)(x)) >> ((int) ((n) &
31))) | (((unsigned long)(x)) << ((int) ((-(n)) & 31))))
    #define _lrotl(x, n)        ((((unsigned long)(x)) << ((int) ((n) &
31))) | (((unsigned long)(x)) >> ((int) ((-(n)) & 31))))
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>


#define ror32(x, n)             _lrotr (x, n)
#define rol32(x, n)             _lrotl (x, n)
#define bswap32(x)              (rol32 ((unsigned long)(x), 8) & 0x00ff00ff
| ror32 ((unsigned long)(x), 8) & 0xff00ff00)

static __forceinline unsigned char      ror8 (const unsigned char x, const
int n) { return (x >> (n & 7)) | (x << ((-n) & 7)); }
static __forceinline unsigned __int64   rol64 (const unsigned __int64 x,
const int n) { return (x << (n & 63)) | (x >> ((-n) & 63)); }
static __forceinline unsigned __int64   bswap64 (const unsigned __int64 x) {
unsigned long a = (unsigned long) x, b = (unsigned long) (x >> 32); return
(((unsigned __int64) bswap32 (a)) << 32) | bswap32(b); }

typedef union _OCTET
{
    unsigned __int64            Q[1];
    unsigned long               D[2];
    unsigned short              W[4];
    unsigned char               B[8];
}   OCTET;

void securid_expand_key_to_4_bit_per_byte (const OCTET source, char *target)
{
    int     i;

    for (i = 0; i < 8; i++)
    {
        target[i*2  ] = source.B[i] >> 4;
        target[i*2+1] = source.B[i] & 0x0F;
    }
}

void securid_expand_data_to_1_bit_per_byte (const OCTET source, char
*target)
{
    int     i, j, k;

    for (i = 0, k = 0; i < 8; i++) for (j = 7; j >= 0; j--) target[k++] =
(source.B[i] >> j) & 1;
}

void securid_reassemble_64_bit_from_64_byte (const unsigned char *source,
OCTET *target)
{
    int     i = 0, j, k = 0;

    for (target->Q[0] = 0; i < 8; i++) for (j = 7; j >= 0; j--) target->B[i]
|= source[k++] << j;
}

void securid_permute_data (OCTET *data, const OCTET key)
{
    unsigned char       bit_data[128];
    unsigned char       hex_key[16];

    unsigned long       i, k, b, m, bit;
    unsigned char       j;
    unsigned char       *hkw, *permuted_bit;

    memset (bit_data, 0, sizeof (bit_data));

    securid_expand_data_to_1_bit_per_byte (*data, bit_data);
    securid_expand_key_to_4_bit_per_byte (key, hex_key);

    for (bit = 32, hkw = hex_key, m = 0; bit <= 32; hkw += 8, bit -= 32)
    {
        permuted_bit = bit_data + 64 + bit;
        for (k = 0, b = 28; k < 8; k++, b -= 4)
        {
            for (j = hkw[k]; j; j--)
            {
                bit_data[(bit + b + m + 4) & 0x3F] = bit_data[m];
                m = (m + 1) & 0x3F;
            }

            for (i = 0; i < 4; i++)
            {
                permuted_bit[b + i] |= bit_data[(bit + b + m + i) & 0x3F];
            }
        }
    }

    securid_reassemble_64_bit_from_64_byte (bit_data + 64, data);
}

void securid_do_4_rounds (OCTET *data, OCTET *key)
{
    unsigned char       round, i, j;
    unsigned char       t;

    for (round = 0; round < 4; round++)
    {
        for (i = 0; i < 8; i++)
        {
            for (j = 0; j < 8; j++)
            {
                if ((((key->B[i] >> (j ^ 7)) ^ (data->B[0] >> 7)) & 1) != 0)
                {
                    t = data->B[4];
                    data->B[4] = 100 - data->B[0];
                    data->B[0] = t;
                }
                else
                {
                    data->B[0] = (unsigned char) (ror8 ((unsigned char)
(ror8 (data->B[0], 1) - 1), 1) - 1) ^ data->B[4];
                }
                data->Q[0] = bswap64 (rol64 (bswap64 (data->Q[0]), 1));
            }
        }
        key->Q[0] ^= data->Q[0];
    }
}

void securid_convert_to_decimal (OCTET *data, const OCTET key)
{
    unsigned long       i;
    unsigned char       c, hi, lo;

    c = (key.B[7] & 0x0F) % 5;

    for (i = 0; i < 8; i++)
    {
        hi = data->B[i] >>   4;
        lo = data->B[i] & 0x0F;
        c = (c + (key.B[i] >>   4)) % 5; if (hi > 9) data->B[i] = ((hi = (hi
- (c + 1) * 2) % 10) << 4) | lo;
        c = (c + (key.B[i] & 0x0F)) % 5; if (lo > 9) data->B[i] = (lo = ((lo
- (c + 1) * 2) % 10)) | (hi << 4);
    }
}

void securid_hash_data (OCTET *data, OCTET key, unsigned char
convert_to_decimal)
{
    securid_permute_data (data, key); // data bits are permuted depending on
the key
    securid_do_4_rounds (data, &key); // key changes as well
    securid_permute_data (data, key); // final permutation is based on the
new key
    if (convert_to_decimal)
        securid_convert_to_decimal (data, key); // decimal conversion
depends on the key too
}

void securid_hash_time (unsigned long time, OCTET *hash, OCTET key)
{
    hash->B[0] = (unsigned char) (time >> 16);
    hash->B[1] = (unsigned char) (time >> 8);
    hash->B[2] = (unsigned char) time;
    hash->B[3] = (unsigned char) time;
    hash->B[4] = (unsigned char) (time >> 16);
    hash->B[5] = (unsigned char) (time >> 8);
    hash->B[6] = (unsigned char) time;
    hash->B[7] = (unsigned char) time;

    securid_hash_data (hash, key, 1);
}

unsigned char hex (const char c)
{
    unsigned char n = c - '0';

    if (n < 10) return n;
    n -= 7;
    if ((n > 9) && (n < 16)) return n;
    n -= 32;
    if ((n > 9) && (n < 16)) return n;
    exit (17);
}

unsigned char read_line (FILE *fi, OCTET *outb)
{
    unsigned char       n;
    unsigned long       i;
    char                ins[80], *s;

    if (!fgets (ins, sizeof (ins), fi)) return -1;
    s = ins;
    if (*s == '#') s++;
    if (strncmp (ins, "0000:", 5) == 0) return -1;
    for (i = 0; i < 38; i++)
    {
        n = hex (*s++) << 4;
        n |= hex (*s++);
        outb->B[i] = n;
    }

    // securid bullshit import file decryption (how much do they pay their
programmers???)
    // anyway, I replaced their 16 stupid xor-D69E36D2/rol-1 "rounds" with
one rol-16/xor
    // doing exactly the same thing (I wonder what they used to generate
their token secrets? ;)

    // btw, we ignore the last two bytes that are just a silly checksum

    for (i = 0; i < 9; i++) outb->D[i] = rol32 (outb->D[i], 16) ^
0x88BF88BF;
    return 0;
}

int main (int argc, char **argv)
{
    signed long         i, j, k, t, serial;
    OCTET               key, hi, hj, input, data[5];
    FILE                *fi;
    char                *s;

    if (argc != 4)
    {
        printf ("usage: securid <tokenfile.asc> <serial number> <current
number displayed on the token>\n");
    }

    fi = fopen (argv[1], "rt");
    serial = bswap32 (strtoul (argv[2], &s, 16)); // although it's base-16,
it's still just a decimal number
    input.D[0] = strtoul (argv[3], &s, 16); // although it's base-16, it's
still just a decimal number as well

    if (!fi)
    {
        printf ("Cannot open token secret file.\n");
        return -1;
    }
    for (;;)
    {
        if (read_line (fi, data)) return 1;
        j = data->D[1]; // printf ("%08X\n", j);
        if (read_line (fi, data)) return 1;
        if (j == serial)
        {
            key.Q[0] = data->Q[0];
            break;
        }
    }
    fclose (fi);

    if (j != serial)
    {
        printf ("Token not found.\n");
        return -1;
    }

    t = (time (NULL) / 60 - 0x806880) * 2; // (t & -4) for 60 sec periods,
(t & -8) for 120 sec periods, etc.

    for (i = (t & -4), j = (t & -4) - 4; i < (t & -4) + 0x40560; i += 4, j
-= 4)
    {
        securid_hash_time (i, &hi, key);
        securid_hash_time (j, &hj, key);
        if ((hi.B[0] == input.B[2]) && (hi.B[1] == input.B[1]) && (hi.B[2]
== input.B[0]))
        {
            j = i; k = (i - (t & -4)) / 2;  break;
        } else if ((hi.B[3] == input.B[2]) && (hi.B[4] == input.B[1]) &&
(hi.B[5] == input.B[0]))
        {
            j = i; k = (i - (t & -4)) / 2 + 1; break;
        } else if ((hj.B[0] == input.B[2]) && (hj.B[1] == input.B[1]) &&
(hj.B[2] == input.B[0]))
        {
            i = j; k = (j - (t & -4)) / 2;  break;
        } else if ((hj.B[3] == input.B[2]) && (hj.B[4] == input.B[1]) &&
(hj.B[5] == input.B[0]))
        {
            i = j; k = (j - (t & -4)) / 2 + 1; break;
        }
    }
    if (i != j)
    {
        printf ("Either your clock is off by more than 1 year or invalid
token secret file.\n");
        return -1;
    }
    if (k)
    {
        printf ("\nToken is %s your clock by %d minute%s.\n\n", (k > 0) ?
"ahead of" : "behind", abs (k), (abs (k) == 1) ? "" : "s");
    }
    else
    {
        printf ("\nToken clock is synchronised with yours.\n\n");
    }
    for (j = 0; j < 40; j += 4)
    {
        securid_hash_time (i + j, &hi, key);
        printf ("%X : %02X%02X%02X\n", i + j, hi.B[0], hi.B[1], hi.B[2]);
        printf ("%X : %02X%02X%02X\n", i + j, hi.B[3], hi.B[4], hi.B[5]);
    }
    printf ("\nOK\n");
    return 0;
}



P.S.
        To the folks at RSA: if you need help with designing secure
encryption
        algorithms and protocols, let us know, we'll help you out. We're not
        all bears here in Russia. We play chess better than you, remember?
P.P.S.
        greets 2all from D.M0ecus


Current thread: