Interesting People mailing list archives

First ever plane with no moving parts takes flight


From: "Dave Farber" <farber () gmail com>
Date: Thu, 22 Nov 2018 12:05:41 +0900



Begin forwarded message:

From: Dewayne Hendricks <dewayne () warpspeed com>
Subject: [Dewayne-Net] First ever plane with no moving parts takes flight
Date: November 22, 2018 at 11:29:58 AM GMT+9
To: Multiple recipients of Dewayne-Net <dewayne-net () warpspeed com>
Reply-To: dewayne-net () warpspeed com

First ever plane with no moving parts takes flight
Flight represents breakthrough that could lead eventually to carbon-neutral air travel
By Alex Hern
Nov 21 2018
<https://www.theguardian.com/science/2018/nov/21/first-ever-plane-with-no-moving-parts-takes-flight>

The first ever “solid state” plane, with no moving parts in its propulsion system, has successfully flown for a 
distance of 60 metres, proving that heavier-than-air flight is possible without jets or propellers.

The flight represents a breakthrough in “ionic wind” technology, which uses a powerful electric field to generate 
charged nitrogen ions, which are then expelled from the back of the aircraft, generating thrust.

Steven Barrett, an aeronautics professor at MIT and the lead author of the study published in the journal Nature, 
said the inspiration for the project came straight from the science fiction of his childhood. “I was a big fan of 
Star Trek, and at that point I thought that the future looked like it should be planes that fly silently, with no 
moving parts – and maybe have a blue glow. But certainly no propellers or turbines or anything like that. So I 
started looking into what physics might make flight with no moving parts possible, and came across a concept known as 
the ionic wind, with was first investigated in the 1920s.

“This didn’t make much progress in that time. It was looked at again in the 1950s, and researchers concluded that it 
couldn’t work for aeroplanes. But I started looking into this and went through a period of about five years, working 
with a series of graduate students to improve fundamental understanding of how you could reduce ionic winds 
efficiently, and how that could be optimised.”

In the prototype plane, wires at the leading edge of the wing have 600 watts of electrical power pumped through them 
at 40,000 volts. This is enough to induce “electron cascades”, ultimately charging air molecules near the wire. Those 
charged molecules then flow along the electrical field towards a second wire at the back of the wing, bumping into 
neutral air molecules on the way, and imparting energy to them. Those neutral air molecules then stream out of the 
back of the plane, providing thrust.

The end result is a propulsion system that is entirely electrically powered, almost silent, and with a 
thrust-to-power ratio comparable to that achieved by conventional systems such as jet engines.

Prof Guy Gratton, an aerospace engineer and visiting professor at Cranfield University, said: “It’s clearly very 
early days: but the team at MIT have done something we never previously knew was possible in using accelerated 
ionised gas to propel an aircraft. Aeronautical engineers around the world are already trying hard to find ways to 
use electric propulsion, and this technology will offer something else that in the future may allow manned and 
unmanned aircraft to be more efficient, and non-polluting. In particular, the fact that they have already got this 
out of the laboratory, and flown a battery driven model aircraft – albeit so far on a very small and controlled scale 
– is very exciting.”

The successful flight of the plane – which has no name beyond the uninspiring “Version Two” – owes as much to the 
engineering prowess required to make it as thin and light as possible as it does to the propulsion method itself. The 
plane weighs just 2.45kg, but manages to fit in a five-metre wingspan, battery stack, and a high-voltage power 
converter.

In the immediate future, the MIT team hope to increase the range and speed of the plane, primarily by scaling up the 
size of the overall machine. Potential applications in the short term include unmanned drones, where silent flight 
may be beneficial, and high-altitude solar-powered flight, where the lack of moving parts could allow such a plane to 
soar for years on end, acting as a pseudo-satellite.

[snip]

Dewayne-Net RSS Feed: http://dewaynenet.wordpress.com/feed/
Twitter: https://twitter.com/wa8dzp






-------------------------------------------
Archives: https://www.listbox.com/member/archive/247/=now
Modify Your Subscription: https://www.listbox.com/member/?member_id=18849915
Unsubscribe Now: 
https://www.listbox.com/unsubscribe/?member_id=18849915&id_secret=18849915-a538de84&post_id=20181121220550:81F3A7DE-EE03-11E8-B81C-FF132FD267E4
Powered by Listbox: https://www.listbox.com

Current thread: